大家好,本篇文章为大家解答以上问题,相信很多人对勾股定理的故事简短都不是特别的了解,因此呢,今天就来为大家分享下关于勾股定理的故事简短以及勾股定理有趣故事的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!
本文目录一览
1、勾股定理的故事2、关于勾股定理的小故事?勾股定理的故事
最早发现"勾三股四弦五"这一特殊关系的是古埃及人,这一事实可以追溯到公元前25世纪,中国古代数学家也较早独立发现并证明过勾股定理,而对它的应用更有许多独到之处。勾股定理一般情况的发现和证明,那要归功于古希腊的毕达哥拉斯。这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。 美国哥伦比亚大学图书馆内收藏着一块编消肆号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前十一世纪,我国周朝数学家商高就提出“勾三、股四、弦五”。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为“勾股定理”,也有人称“商高定理”。 在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而西方人都习惯地称这个定理为“毕达哥拉斯定理”。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为兆桥简股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特族裤例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
关于勾股定理的小故事?
勾股的发现 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道: “如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。 1881年,伽菲尔德就任美国第二十任总统。后来,
勾股的证明
人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。
勾股定理同时也是数学中应用最广泛的定理之一。例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线。
正因为这样,人坦胡们对这个定理的备加推崇便不足为奇了。1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对勾股定理的说明。希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。 尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理。
2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就和信悉,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定。
今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图)。七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板。现在的七巧板是经过一段历史演变过程的。
勾股趣事
甚至还有人提出过这样的建唤乎议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!? 有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解。这一定理叫做费尔马大定理(费尔马是17世纪法国数学家)。参考资料:http://zhidao.baidu.com/question/13286127.html