您当前的位置:首页 > 生活常识 > 正文

大数据是干什么的(大数据是干什么的啊,好学不)

本文目录

  • 大数据是干什么的啊,好学不
  • 大数据到底是什么行业啊,具体是干什么的啊
  • 大数据是做什么的
  • 有没有知道大数据是干什么的吗
  • 大数据能用来做什么
  • 大数据是干什么的
  • 大数据专业是干嘛的

大数据是干什么的啊,好学不

大数据,IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据是需要紧紧围绕大数据的价值空间来展开,目前主要的操作可以分为三大块,分别是数据采集操作、数据分析操作和数据应用操作,这些操作的背后几乎涵盖了当前大数据行业的所有产业链,数据采集操作是大数据产业链的起始端,所以要想了解大数据操作,首先就应该从数据采集开始。当前数据采集渠道通常有三个,一个是传统信息系统,比如各种ERP系统就是典型的代表,这些ERP系统当中的数据往往具有较高的价值密度,通常对于安全性也有非常高的要求。从数据结构上来看,传统信息系统的数据结构是相对比较单一的,处理起来也比较容易。大数据需要学习的内容还是很多的,是有一定难度的,知乎专栏:从头学习大数据供你参考学习,可以尝试自学一下,感受一下难易程度。大数据注重逻辑性,在学习时可以有意识的培养逻辑思维,快速捋清编程逻辑,还要多动手实操,将理论与操作结合,搞懂现象背后的逻辑。另外,要分析源码、勤做笔记,多做复习,学习的事情来不得半点马虎,不努力肯定不行的。分享一份大数据技术的学习路线供你参考,希望对你有所帮助!学习大数据首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

大数据到底是什么行业啊,具体是干什么的啊

大数据工作实际上就是一个数据统计的行业,从各种数据里边儿进行检索汇总,从而可以提炼出自己所需要的数据。可以为企业或者单位的发展确定一个方向,提供一个参考的数据值。

大数据是做什么的

1.在当今这个时代人们对大数据这个词并不陌生,都明白在这个互联网时代会有各种的大数据产生,那么数据分析就会显得格外的重要。那什么是大数据呢,其实呀并不难理解,大数据就是指超过传统数据库系统处理能力的数据。生活上,工作上很多方面都会从大数据中得到结论,有很多用其他方法难以得到的信息,通过分析数据,就变得一目了然。比如呢,科技公司他们提供的价值的很大一部分来自他们的数据,他们不断对其进行分析提高效率并开发新产品。可想而知大数据的重要性

 2.如果你也想从事大数据这方面的工作,这里介绍一下大数据要学习和掌握的知识与技能:

①java:一门面向对象的计算机编程语言,具有功能强大和简单易用两个特征。

②spark:专为大规模数据处理而设计的快速通用的计算引擎。

③SSM:常作为数据源较简单的web项目的框架。

④Hadoop:分布式计算和存储的框架,需要有java语言基础。

⑤spring cloud:一系列框架的有序集合,他巧妙地简化了分布式系统基础设施的开发。

⑤python:一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。

3.随着互联网时代的到来,人们愈发认识到现代科技与计算机技术的重要性,无论是互联网头部企业对IT技术的研发应用还是普通企业的发展需要都可以看出IT行业正处于如日中天的发展态势下,行业竞争同样十分激烈随着人工智能、物联网的发展、大数据人才急剧增加,所以大数据行业的就业前景一片光明。如果你想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,建议实地考察对比一下。

祝你学有所成,望采纳。

有没有知道大数据是干什么的吗

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop

大数据能用来做什么

大数据为我们提供了巨大的机遇,帮助我们开发新的创意产品和服务,例如手机APP或企业商业智能产品。它可以促进经济的增长和就业机会,可以大大提高人们的生活质量。一、 医疗:提高诊断和治疗的水平大数据为提高医疗信息处理效率提供了解决方案,从而为企业、公共部门和公民创造价值。对大型临床数据集的分析可以优化新药和治疗的临床和成本效益,患者可以受益于更及时和适当的护理。数据互操作性至关重要,因为数据来自不同的和异构的来源,如生物信号流、健康记录、基因组学和临床实验室测试等。二、 商业:企业无形资产,助力企业决策如今,大数据非常重要,它可以直接影响企业的估值。大数据已经成为企业一种关键的无形资产,可以通过数据收集加以衡量,并计入估值。企业如何使用数据以及基于数据做出的决策也将影响企业决策的成功率。三、 数据:数据市场的价值在过去十几年里,信息技术直接或间接地推动了中国的经济增长,数据的作用已经从简单支持商业决策转变为自身的价值存在。在新的网络经济中,开放的数据市场已变得至关重要。四、 交通:减少事故和交通堵塞交通部门可以从道路传感器收集大量的数据。智能利用这些大数据,可以支持政府优化交通流管理。市民和公司可以通过使用路线规划大大节约出行时间。五、 环境:降低能源消耗大数据革命带来了应对环境挑战的新方式。更好地利用全球可用的数据集有助于科学家开展研究,并使决策者能够就洪水等自然灾害作出知情和决策,以应对气候变化和降低成本。智能城市还设有数据中心,根据可再生能源和其他有用指标的可用性,调整公共建筑的电力消耗。六、 农业:更安全的食品和更高的生产力在农业领域智能地使用大数据,可以同时提高生产率、粮食安全和农民收入。通过对传感器和地球观测数据的智能和广泛使用,可以有效改善我们今天的耕作方式。这包括可以在我们的农业实践中更有效地利用自然资源(包括水或阳光)。有了先进的技术,农民也可以获得他们的农业机械正在如何工作的实时数据,以及历史上的天气模式、地形和作物表现。

大数据是干什么的

要想简单明了地表述出大数据的概念和操作,应该站在一个更高的视野来看待大数据,通常来说,站在行业的高度来看待大数据,大数据的核心在于为行业领域带来新的价值空间,通过大数据来全面重塑企业各种模式,而如果单纯地站在数据的角度来看待大数据,大数据的核心在于数据的价值化,数据价值化的过程本身就能够开辟出一个巨大的价值空间。大数据的操作要紧紧围绕大数据的价值空间来展开,目前主要的操作可以分为三大块,分别是数据采集操作、数据分析操作和数据应用操作,这些操作的背后几乎涵盖了当前大数据行业的所有产业链。数据采集操作是大数据产业链的起始端,所以要想了解大数据操作,首先就应该从数据采集开始。当前数据采集渠道通常有三个,一个是传统信息系统,比如各种ERP系统就是典型的代表,这些ERP系统当中的数据往往具有较高的价值密度,通常对于安全性也有非常高的要求。从数据结构上来看,传统信息系统的数据结构是相对比较单一的,处理起来也比较容易。其二是互联网(Web)系统,相对于ERP系统来说,互联网本身就是一个巨大的数据池,这个数据池不仅承载了大量的数据,同时还在不断更新,这也为数据采集提供了天然的渠道。相对于传统信息系统来说,互联网系统本身的数据类型是比较复杂的,结构化数据、半结构化数据和非结构化数据混杂,这对于数据分析操作也提出了较高的要求。其三是物联网系统,当前物联网系统所产生的数据是大数据的主要数据来源,也可以说物联网是促进大数据概念产生的重要原因之一。物联网所产生的数据不仅数据量大,数据类型多样化,同时物联网所产生的数据还有比较低的价值密度,这对于数据分析技术提出了更高的要求。随着5G通信的落地应用,物联网本身产生的数据量会越来越大,自身的价值空间也会越来越大。数据分析操作是当前大数据操作的重要环节,实际上对于大量传统行业来说,数据分析将是很多职场人需要重点掌握的技能之一。当前数据分析操作有两种主要方式,一种是统计学方式,另一种是机器学习方式。统计学的数据分析方式是比较传统的数据分析方式,有大量的工具可以使用,针对于结构化数据来说,统计学的数据分析方式往往更适合一些。机器学习的数据分析方式针对于复杂的数据环境往往有更好的分析效果,但是对于数据分析人员也提出了更高的要求。数据应用操作是体现大数据价值的重要渠道,所以数据应用操作也非常重要。从最终的应用目标来看,数据应用操作的目标无外乎两大类,一类是人类用户,另一类是智能体(人工智能产品)。从大的发展趋势来看,在大数据时代,要想充分发挥出大数据的价值,应该重视智能体的应用渠道。

大数据专业是干嘛的

大数据工程师有不少细分方向,不同的方向需要具备不同的知识结构,通常情况下大数据工程师分为四个具体的工作领域,分别是大数据底层平台研发、大数据应用开发、大数据分析和大数据运维。大数据专业是做什么的?分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务:1、找出过去事件的特征:大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。2、预测未来可能发生的事情:通过引入关键因素,大数据工程师可以预测未来的消费趋势。3、找出最优化的结果:根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。除此之外,在工作岗位上,大数据工程师需要基于Hadoop,Spark等构建数据分析平台,进行设计、开发分布式计算业务。负责大数据平台(Hadoop,HBase,Spark等)集群环境的搭建,性能调优和日常维护。负责数据仓库设计,数据ETL的设计、开发和性能优化。参与构建大数据平台,依托大数据技术建设用户画像。除开以上是需要负责处理的工作,还需要负责分析新的数据需求,完成数据处理的设计(文档)和实现。对大数据应用产品设计及解决方案设计,通过大数据挖掘用户需求。负责数据处理程序设计框架改善,数据处理性能优化, 系统数据处理的能力提高等


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: daily后面为什么要加basis?everyday和daily有何区别

下一篇: 梦见黑鸽子是什么意思,梦到黑鸽子预示什么(孕期的这些胎梦)



推荐阅读