怎么求拐点?
拐点是指一个函数图像上的拐转点。求拐点的方法有:1、使用导数。拐点出现在曲线发生拐转的那一点,因此从微分的角度,导数第一时刻它的值为0,根据这一特性,可以把导数的值置零,求解得有拐点的曲线。2、用数值积分法。采用数值积分法求解拐点,适合于不易求导,而且有拐点的函数,数值积分就是选取一个参数,然后在该参数内划分一些点,对这些点求对应的函数值,然后把它们进行求和,就可以得到含有拐点的精确数值。3、采用图形填充法。采用图形填充法求拐点,是把拐点表示为两个函数形式的填充区域,并把曲线上的拐点确定为每个填充区域的交点,经过大量的计算,就可以得到拐点的准确位置。
数学里的拐点是什么意思?
拐点:使函数凹凸性改变的点。
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。
若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
拓展资料
拐点的定义是这样的:
定义1:设曲线y=f(x)在点(x0,f(x0))处有穿过曲线的切线,且在切点近旁,曲线在切线的两侧分别是严格凸和严格凹的,这时称点(x0,f(x0))为曲线y=f(x)的拐点.
理解这个定义,有两个关键点:
①曲线和切线在点(x0,f(x0))互相穿过;
②在U的某邻域内,右侧邻域U+(x0)和左侧邻域U-(x0)的凸性是严格且相反的。
按道理,定义肯定要非常准确的。然而,有一些地方,却把函数f(x)=|x^2-1|的点(1,0)和点(-1,0)定义成函数的拐点。那问题就来了,曲线f(x)=|x^2-1|显然在点(1,0)和点(-1,0)这两个点甚至是不可导,更不可能存在切线,又何来切线与曲线互相穿过一说呢?
因此,如果按照这个定义理解,点(1,0)和点(-1,0)就不是f(x)=|x^2-1|的拐点。不过类似这种情况还有很多,在一些地方,造成争论是难免的。按拐点的另一个概念“反曲点”来看。拐点的定义似乎改成下面这个形式更加合适。
定义2:函数y=f(x)在点x0的某邻域内连续,若(x0,f(x0))是曲线y=f(x)凹与凸的分界点,则称(x0,f(x0))为曲线y=f(x)的拐点。
按定义2,点(1,0)和点(-1,0)明显就是f(x)=|x^2-1|的拐点。而且这个定义在网上也是可以考证的,只是它的地位却不如定义1,总是作为定义1的补充说明出现的。所以老黄才会说,目前对拐点的定义并不够明确。
老黄觉得,定义1是把拐点处切线穿过曲线的普遍情形当作定义的一个部分了。但除了普遍情形,其实还有很多特殊情形。一旦写进了定义,就变成了必要条件,从而就会排除掉很多特殊情形,造成定义的不准确。
除了这点,定义1还有很多经不起推敲的地方。比如定义中说“曲线在切线的两侧分别是严格凸和严格凹的”,其实这种说法是不准确的。因为它意味着,曲线被分成两个区间,然而曲线是可以被分成无数的区间的,只要在相邻两个区间上,满足这个条件就可以了。因此,无论是定义2还是老黄补充的解析②,都明确指出,只需要在x0的某邻域上满足条件就可以了。
另外,还有一点涉及到导数和切线的知识的争议点。那就是定义1中提到,曲线在x0的切线,自然地,函数在x0的切线存在就成了一个必要条件。然而,前面提到的,f(x)=|x^2-1|在拐点点(1,0)和(-1,0)上切线都不存在。
而且切线的存在容易被误认为可导。但其实切线存在未必就可导。因为有一种特殊的情况,是导数等于无穷大时,我们就变它导数不存在,从而也不可导。比如函数y=三次根号x在x=0上就是这种情况。这点让老黄觉得非常别扭。在老黄看来“切线存在”、“导数存在”、“函数可导”这三者如果统一起来,更容易让人接受。
因此,老黄觉得定义2更加靠谱。定义1应该作为“可导的拐点”的定义,而不是拐点的定义。因为对拐点的研究,通常是通过对该点的二阶导数的研究来进行的。所以,可导的拐点的定义,也有它存在的意义。