本文目录
- 云存储的底层关键技术有哪些
- 云存储的核心技术
- IPFS是什么!
- 目前有哪些主流存储技术
- 大数据存储技术都有哪些
- 云存储是什么
- 什么是云存储技术
- 云存储架构分哪些层次,各自实现了什么功能
云存储的底层关键技术有哪些
云计算关键技术 云计算是分布式处理、并行计算和网格计算等概念的发展和商业实现,其技术实质是计算、存储、服务器、应用软件等IT软硬件资源的虚拟化,云计算在虚拟化、数据存储、数据管理、编程模式等方面具有自身独特的技术。云计算的关键技术包括以下几个方向: 虚拟机技术 虚拟机,即服务器虚拟化是云计算底层架构的重要基石。在服务器虚拟化中,虚拟化软件需要实现对硬件的抽象,资源的分配、调度和管理,虚拟机与宿主操作系统及多个虚拟机间的隔离等功能,目前典型的实现(基本成为事实标准)有Citrix Xen、VMware ESX Server 和Microsoft Hype-V等。 数据存储技术 云计算系统需要同时满足大量用户的需求,并行地为大量用户提供服务。因此,云计算的数据存储技术必须具有分布式、高吞吐率和高传输率的特点。目前数据存储技术主要有Google的GFS(Google File System,非开源)以及HDFS(Hadoop Distributed File System,开源),目前这两种技术已经成为事实标准。 数据管理技术 云计算的特点是对海量的数据存储、读取后进行大量的分析,如何提高数据的更新速率以及进一步提高随机读速率是未来的数据管理技术必须解决的问题。云计算的数据管理技术最著名的是谷歌的BigTable数据管理技术,同时Hadoop开发团队正在开发类似BigTable的开源数据管理模块。 分布式编程与计算 为了使用户能更轻松的享受云计算带来的服务,让用户能利用该编程模型编写简单的程序来实现特定的目的,云计算上的编程模型必须十分简单。必须保证后台复杂的并行执行和任务调度向用户和编程人员透明。当前各IT厂商提出的云计划的编程工具均基于Map-Reduce的编程模型。
云存储的核心技术
云计算系统的核心技术:并行计算。并行计算(ParallelComputing)是指同时使用多种计算资源解决计算问题的过程。通过并行计算集群完成数据的处理,再将处理的结果返回给用户。 1、编程模式; 2、海量数据分布存储技术; 3、海量数据管理技术; 4、虚拟化技术; 5、云计算平台管理技术; 6、信息安全管理技术;7、运维管理技术。
IPFS是什么!
IPFS(InterPlanetary File System,星际文件系统),它是一种全新的超媒体文本传输协议,可以把它理解为一种支持分布式存储的网站。IPFS 诞生于2015年、2017年8月,IPFS 的激励层filecoin,公开众筹在很短时间内,就募集了超过2.57亿美金,相当于接近20个亿人民币的投资!所以它引起了全世界投资人的高度关注!与此同时它打破纪录,创造了当年全球ICO的奇迹,当之无愧的成为了一个全球瞩目堪比当年以太坊的明星项目!相对应的就是现在大家所熟悉的以
目前有哪些主流存储技术
1、直接附加存储(DAS)
特点是:硬件的堆叠,存储操作依赖于服务器,不带有存储操作系统。应用环境特殊。数据处理和传输能力较低;服务器出现宕机时,波及到存储数据,使其无法使用。
2、网络附加存储(NAS)
通过网络接口与网络直接相连,访问。存储设备类似于专用的文件服务器,提供文件系统功能,降低设备的成本。优化了系统硬软件体系结构。以数据为中心,存储设备与服务器分离,其存储设备在功能上完全独立。支持多种TCPIP网络协议。
3、存储区域网络SAN
通过专用交换机将磁盘阵列与服务器连接。采用块(block)级别存储最大特点是将存储设备从做以太网中分离了出来,成为独立的存储区域网络SAN的系统结构。
扩展资料:
有效利用网络存储技术是任何数据存储管理策略的重要组成部分,仅仅依靠硬盘、JBOD和其它类型的本地存储是不足以保护关键业务数据的完整性的,网络存储在这个时候真正显示出巨大的威力,它不仅可以容纳由服务器产生的业务数据,还可以容纳由PC端产生的数据,并为数据提供良好的保护。
许多网络存储厂商都提供了合作伙伴计划,包括惠普、EMC、戴尔、IBM和NetApp等公司,但最重要的是要了解组成存储网络的每一种技术,如NAS网关,光纤通道SAN,RAID阵列等。
大数据存储技术都有哪些
1. 数据采集:在大数据的生命周期中,数据采集是第一个环节。按照MapReduce应用系统的分类,大数据采集主要来自四个来源:管理信息系统、web信息系统、物理信息系统和科学实验系统。2. 数据访问:大数据的存储和删除采用不同的技术路线,大致可分为三类。第一类主要面向大规模结构化数据。第二类主要面向半结构化和非结构化数据。第三类是面对结构化和非结构化的混合大数据,3。基础设施:云存储、分布式文件存储等。数据处理:对于收集到的不同数据集,可能会有不同的结构和模式,如文件、XML树、关系表等,表现出数据的异构性。对于多个异构数据集,需要进行进一步的集成或集成处理。在对不同数据集的数据进行收集、排序、清理和转换后,生成一个新的数据集,为后续的查询和分析处理提供统一的数据视图。5. 统计分析:假设检验、显著性检验、差异分析、相关分析、t检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测、残差分析,岭回归、logistic回归、曲线估计、因子分析、聚类分析、主成分分析等方法介绍了聚类分析、因子分析、快速聚类与聚类、判别分析、对应分析等方法,多元对应分析(最优尺度分析)、bootstrap技术等。6. 数据挖掘:目前需要改进现有的数据挖掘和机器学习技术;开发数据网络挖掘、特殊群挖掘、图挖掘等新的数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破面向领域的大数据挖掘技术如用户兴趣分析、网络行为分析、情感语义分析等挖掘技术。7. 模型预测:预测模型、机器学习、建模与仿真。8. 结果:云计算、标签云、关系图等。关于大数据存储技术都有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
云存储是什么
云存储是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。
在云计算的基础上发展出了云存储,云存储实际上是云计算中有关数据存储、归档、备份的一个部分,是一种创新服务。
在云存储服务构建方面,它是通过分布式、虚拟化、智能配置等技术,实现海量、可弹性扩展、低成本、低能耗的共享存储资源。
云存储的特点
1、超大规模,支持海量数据存储;
2、高可扩展性,能够随时在线升级云存储空间容量;
3、高可用性和可靠性,当出现数据丢失时,能够通过副本快速恢复;
4、安全,云存储通过用户鉴权、访问权限控制等方式保障数据安全;
5、透明服务,拥有统一的接口,当节点发生变化时,用户能够随时了解情况;
6、自动容错,能够自动处理节点故障,保障长时间正常运作;
7、低成本,使用云存储能够减少电源消耗,从而有效降低能源成本。
什么是云存储技术
云存储是在云计算(cloud computing)概念上延伸和发展出来的一个新的概念,是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。 当云计算系统运算和处理的核心是大量数据的存储和管理时,云计算系统中就需要配置大量的存储设备,那么云计算系统就转变成为一个云存储系统,所以云存储是一个以数据存储和管理为核心的云计算系统。 云存储的两个层面 云存储的两个层面是作为云计算支撑的存储计算,主要涉及分布式存储(如分布式文件系统、IPSAN、数据同步、复制)、数据存储(如重复数据删除、数据压缩、数据编码)和数据保护(如RAID、CDP、快照、备份与容灾)等技术领域,如图8-30所示,这在第6章中已有所介绍。 和云安全技术一样,云存储技术也需要利用现有的所有存储技术针对云计算三层架构的各个环节采用适当的存储技术,才能取得最佳效果,例如,对应不同需求,有时应该使用数据库技术但有时却应该使用LDAP技术,有些性能要求高的系统不能使用SAN或NAS,需直接使用基于RPC或Socket技术的并发文件系统,有些应用使用SAN成本太高等,这里不再做深入介绍。如图8-31所示是一个采用NetApp FAS、思科 UCS和 VMWare vShpere 4技术打造的存储系统,对上述两种云存储技术和应用都有促进作用。 云存储架构 分为两类:一种是通过服务来架构;另一种是通过软件或硬件设备来架构。 传统的系统利用紧耦合对称架构,这种架构的设计旨在解决HPC(高性能计算、超级运算)问题,现在其正在向外扩展成为云存储从而满足快速呈现的市场需求。下一代架构已经采用了松弛耦合非对称架构,集中元数据和控制操作,这种架构并不非常适合高性能HPC,但是这种设计旨在解决云部署的大容量存储需求。各种架构的摘要信息如下: 紧耦合对称(TCS)架构 构建TCS系统是为了解决单一文件性能所面临的挑战,这种挑战限制了传统NAS系统的发展。HPC系统所具有的优势迅速压倒了存储,因为它们需要的单一文件I/O操作要比单一设备的I/O操作多得多。业内对此的回应是创建利用TCS架构的产品,很多节点同时伴随着分布式锁管理(锁定文件不同部分的写操作)和缓存一致性功能。这种解决方案对于单文件吞吐量问题很有效,几个不同行业的很多HPC客户已经采用了这种解决方案。这种解决方案很先进,需要一定程度的技术经验才能安装和使用。 松弛耦合非对称(LCA)架构 LCA系统采用不同的方法来向外扩展。它不是通过执行某个策略来使每个节点知道每个行动所执行的操作,而是利用一个数据路径之外的中央元数据控制服务器。集中控制提供了很多好处,允许进行新层次的扩展: ● 存储节点可以将重点放在提供读写服务的要求上,而不需要来自网络节点的确认信息。 ● 节点可以利用不同的商品硬件CPU和存储配置,而且仍然在云存储中发挥作用。 ● 用户可以通过利用硬件性能或虚拟化实例来调整云存储。 ● 消除节点之间共享的大量状态开销也可以消除用户计算机互联的需要,如光纤通道或infiniband,从而进一步降低成本。 ● 异构硬件的混合和匹配使用户能够在需要的时候在当前经济规模的基础上扩大存储,同时还能提供永久的数据可用性。 ● 拥有集中元数据意味着,存储节点可以旋转地进行深层次应用程序归档,而且在控制节点上,元数据经常都是可用的。
云存储架构分哪些层次,各自实现了什么功能
(1)存储层云存储系统对外提供多种不同的存储服务,各种服务的数据统一存放在云存储系统中,形成一个海量数据池。从大多数网络服务后台数据组织方式来看,传统基于单服务器的数据组织难以满足广域网多用户条件下的吞吐性能和存储容量需求;基于P2P架构的数据组织需要庞大的节点数量和复杂编码算法保证数据可靠性。相比而言,基于多存储服务器的数据组织方法能够更好满足在线存储服务的应用需求,在用户规模较大时,构建分布式数据中心能够为不同地理区域的用户提供更好的服务质量。云存储的存储层将不同类型的存储设备互连起来,实现海量数据的统一管理,同时实现对存储设备的集中管理、状态监控以及容量的动态扩展,实质是一种面向服务的分布式存储系统。(2)基础管理层云存储系统架构中的基础管理层为上层提供不同服务间公共管理的统一视图。通过设计统一的用户管理、安全管理、副本管理及策略管理等公共数据管理功能,将底层存储与上层应用无缝衔接起来,实现多存储设备之间的协同工作,以更好的性能对外提供多种服务。(3)应用接口层应用接口层是云存储平台中可以灵活扩展的、直接面向用户的部分。根据用户需求,可以开发出不同的应用接口,提供相应的服务。比如数据存储服务、空间租赁服务、公共资源服务、多用户数据共享服务、数据备份服务等。(4)访问层通过访问层,任何一个授权用户都可以在任何地方,使用一台联网的终端设备,按照标准的公用应用接口来登录云存储平台,享受云存储服务。2云存储技术的优势作为新兴的存储技术,与传统的购买存储设备和部署存储软件相比,云存储方式存在以下优点:(1)成本低、见效快传统的购买存储设备或软件定制方式下,企业根据信息化管理的需求,一次性投入大量资金购置硬件设备、搭建平台。软件开发则经过漫长的可行性分析、需求调研、软件设计、编码、测试这一过程。往往在软件开发完成以后,业务需求发生变化,不得不对软件进行返工,不仅影响质量,提高成本,更是延误了企业信息化进程,同时造成了企业之间的低水平重复投资以及企业内部周期性、高成本的技术升级。在云存储方式下,企业除了配置必要的终端设备接收存储服务外,不需要投入额外的资金来搭建平台。企业只需按用户数分期租用服务,规避了一次性投资的风险,降低了使用成本,而且对于选定的服务,可以立即投入使用,既方便又快捷。(2)易于管理传统方式下,企业需要配备专业的IT人员进行系统的维护,由此带来技术和资金成本。云存储模式下,维护工作以及系统的更新升级都由云存储服务提供商完成,企业能够以最低的成本享受到最新最专业的服务。(3)方式灵活传统的购买和定制模式下,一旦完成资金的一次性投入,系统无法在后续使用中动态调整。随着设备的更新换代,落后的硬件平台难以处置;随着业务需求的不断变化,软件需要不断地更新升级甚至重构来与之相适应,导致维护成本高昂,很容易发展到不可控的程度。而云存储方式一般按照客户数、使用时间、服务项目进行收费。企业可以根据业务需求变化、人员增减、资金承受能力,随时调整其租用服务方式,真正做到“按需使用”。3云存储技术趋势随着宽带网络的发展,集群技术、网格技术和分布式文件系统的拓展,CDN内容分发、P2P、数据压缩技术的广泛运用,以及存储虚拟化技术的完善,云存储在技术上已经趋于成熟,以“用户创造内容”和“分享”为精神的Web2.0推动了全网域用户对在线服务的认知。